
Designing Autograders For Open-Ended Assignments In An Introductory

Programming CS Coursera Course

8/05/2024

Kevin Alvarenga (Duke University)

Susan Rodger, Kristin Stephens-Martinez, Yesenia Velasco (Duke University)

Nikita Agarwal (University of Wisconsin - Madison)

Arunima Suri, University of Illinois Urbana - Champaign

1. Motivation

Open-ended assignments help students to be creative and enhance their critical thinking skills.

These assignments encourage students to apply their existing knowledge in innovative ways.

However, it is time consuming for instructors to manually grade these open-ended assignments.

It is beneficial, especially in large scale courses, to have autograders that can provide immediate

feedback and allow students to reflect on their project in a timely manner. This efficiency

not only enhances the student learning but also alleviates the workload on instructors, enabling

them to focus more on creating the lecture content. While there are many benefits to using

autograders, most of these autograders are meant for assignments with a given single goal/end

state. This can work well in higher level CS courses where there is one main objective, or one

way to solve a specific problem. However, more open-ended assignments, which allow for more

creativity, are common in introductory Computer Science courses. There is a gap in research on

autograders for these types of assignments, and it can make it difficult for instructors to grade

these assignments.



2. Background / Related Work

2.1 The Use of Open-Ended Assignments

Significant research has been done on using open-ended assignments in introductory

Computer Science classes to see how they can impact student motivation, self-efficacy,

engagement, grades, and more. There are varying definitions for the term “open-ended

assignment”, but there is a general agreement on what it stands for. A general consensus is that

an open-ended assignment allows students to make their own choices and decisions about

aspects of the project, which results in each student having their own solution to a general

problem [7]. The use of open-ended assignments is motivated by many different learning

theories, including the idea that students build knowledge by looking at prototype models, the

constructivist learning theory, and student metacognition [10]. Open-ended assignments have

shown to have a positive impact on student motivation, confidence level, and satisfaction [7].

They also have had no impact on student grades, self-efficacy, or attention span. Thus, the

research shows that open-ended assignments, at the very least, do not have potential negative

effects. [7].

If implemented correctly, open-ended assignments can be beneficial in the learning

environment. There is still the potential issue of students lacking interest, which can affect their

learning. In 2018, researchers were curious if letting students choose the assignment would aid

with their learning. The researchers examined an introductory coding class and noticed that many

students did not enjoy the class as the assignments did not align with their interests. To address

this, they designed 5 open-ended assignments for students to choose from and noticed that their

enjoyment and strength on core concepts increased [3]. However, it was also mentioned that the



grading process for these assignments required much work and was tedious for instructors. The

researchers noticed that incorporating some form of choice was beneficial for the students in

their learning. However, they also acknowledged that there is still room for improvement of the

actual grading process. Therefore, the use of choice in these courses has the potential to provide

benefits to the student, but there is still no path to designing an autograder capable of grading

these assignments.

2.2 The Efficacy of Autograders

Autograders have been helpful in courses with a large roster of students as they reduce

the time needed for grading, give clear feedback, and can evaluate complex equations much

quicker. Also, autograders can be used to help guide students to improved solutions with less

errors, by providing feedback or hints on where to move forward. Research shows that

generating hints for open-ended assignments can be difficult due to variability in programs.

However, researchers were able to use student data to generate hints specifically for the student

and have helped them reach a better solution [5]. This helps maintain the core of open-ended

assignments and ensures that students still receive the help they need. Even though this seems

like a reasonable solution, there has been less research conducted on the student side of things. It

has been found that student perceptions on autograders can affect how well they perform, as well

as the experience they have. These students have stated that they would have had a better

experience with the autograder if they could directly cater their code for it. [4]. However, this

negates the benefits of using open-ended assignments as the main purpose is to promote

creativity and new formats.



2.3 Student Perspectives on Autograders

Students often believed that autograders used simple techniques such as general matching

and keyword matching [6]. Combined with false negatives, correct solutions being marked as

incorrect, students started to develop a distrust of the autograders for their course. This made it

frustrating for the students as it made them question their coding skills and standing in the

course. However, false positives, incorrect solutions marked as correct, did not reveal the same

negative effect on the student’s view on the course. Also, students indicated that if they were

informed of the autograder’s design, then they could cater their code to it and work on more

assignments. This indicates an increase in course engagement, therefore, for our study we will

ask students for their perspectives on how our autograders work through reflection surveys.

2.4 False Positive/Negative Impact on Students

When developing an autograder, it is best to minimize false positives and false negatives

to ensure students are receiving accurate feedback. In an introductory programming course, it

revealed that false positives were more damaging than false negatives on a student’s learning

experience [6]. With false positives, students would less likely admit that their code was

incorrect and move on without engaging with course material. However, with false negatives,

students would ignore this and engage more with the course to get a correct scoring. So, false

negatives encouraged students to reattempt and use the course materials more, even if they felt

their code was correct. Therefore, this shows that how a student views the accuracy of an

autograder can, on some level, impact their engagement level with the course.



2.5 Limiting Student Submissions

Autograders can vary in how students are able to submit their code. One example would

be the number of submissions, or the time in between submissions. It was found in an

introductory programming course, that having submissions be tied to tokens that take 24 hours to

generate, promoted students to engage with the course materials more [2]. This format moved

students away from the trial-and-error mindset, motivating students to take the time to debug and

find new solutions. This increased course engagement and students were overall satisfied with

the autograder.

A different approach was taken in 2022, where researchers developed an algorithm that

could grade code based on different aspects such as lines of code, spacing, variable names, string

count, etc. [9]. This helped with a course where all assignments had visual and graphical output,

making it difficult for an autograder to correctly grade them. This algorithm focused on

classifying the elegance of a student’s code, which, while important, is not a sufficient criteria to

use for grading open-ended assignments. This algorithm did not take into account the actual

output of a student’s code which is the main concern when it comes to these types of

assignments.

Given the previous research out there, it is clear that there lacks an integration of

autograders into open-ended assignments for introductory computer science classes. Since these

classes are having larger and larger student enrollment, assignments simply cannot be graded by

hand. Therefore, it is critical that autograders be introduced for open-ended assignments as

open-ended assignments are an important way to ensure that students are able to be creative and

stay motivated as they complete assignments. In other words, the main problem lies in a lack of



existence of autograders that can handle student creativity, so our work aims to fill this gap

through building and documenting autograders for open-ended assignments [8].

3. Design Process

My main role for this project was to use Python and Pytest, a testing framework, to develop

autograders for open-ended assignments. These assignments were for an introductory

college-level programming Coursera course taught in python. My team was able to design

multiple autograders and tested them in the Coursera environment. The main objective was to

ensure that the assignments can be open-ended but also still feasible to grade. We wanted to

ensure that students had creative freedom in their learning and were still given support to

improve. Currently, there isn’t much research on designing autograders for open-ended

assignments, which is where our process comes in.

3.1 Open-Ended Assignment Example

This Coursera course uses open-ended coding assignments for students to learn Python

and programming skills. An example of an open-ended assignment would be having students

design a store with certain items for sale. In this assignment, students are required to code

functions that allow the user to grab certain items for their cart, get the price of each individual

item, and apply coupons to some items. Therefore, this assignment, besides having a couple

required functions, is fully dependent on the student and their choice of item and pricing. An

approach a student can take is to first decide the items and their price. Their next step would be

to decide the format of presenting the item and price to the user. This format could be a

numbered list, a regular list, or even just a one line statement. They could also print out pictures



of the items to the terminal if they choose to do so. The required functions only need to return the

desired value, but the student can print out the values in any form they wish. So, this assignment

remains open-ended since the student can decide how their store presents and sells the items of

their choosing. As long as they have the required functions, they can add any other function or

anything to their program that still allows for it to execute.

3.2 Development Process

Each lab/assignment had a list of requirements that a student needed to follow. These

requirements were pretty basic as we still wanted students to be creative with their programs.

From the student view, the requirements were separated into two categories, required and

exceeds expectations. The required test cases made up 80% of the possible points, while the

remaining 20% came from the exceeds expectation category. A student only needs to get 80% to

pass the specific lab/assignment.

The first step was to design sample student solutions, where there was a mixture of

correct and incorrect solutions. The incorrect solutions were designed based on common errors

students could make in their program. These solution files are also focused on capturing edge

cases that the autograder would have to consider. So it was best to create these solution files

before the testers to ensure the testers can properly handle the sample solutions. These solution

files were constantly changing and new ones were created throughout the development process.

In order to build the testers, we had to keep the requirements in mind and we split our test

cases into three categories: pretests, required, and exceptional. Pretests are run before the

student’s program gets tested with the listed requirements. These tests are meant to check for

errors, like compile errors, lack of input, too much input, or just general bugs that can cause the



program to not execute properly. If a student fails even one of the testers here, then they receive a

score of 0, with specific feedback on why this occurred. The required and exceptional test cases

reflect the requirements of the lab and all of this was through the use of Pytest.

After all student solutions and testers were created, we will assess them in an admin view.

We execute all solution files in the terminal and see if the error message received matches the

expected error message for that solution file. Once all solutions have matched the expected error

message, then we move into the student view. We test our autograder and submit student

solutions to see if the error messages are consistent. Once this is completed, then we move into

the code review process where more edits are made to refine the autograder.

3.3 Autograders I Have Developed

Decision Advisor with Randomness

This autograder was a group task where I worked with the other two undergraduate team

members. This lab was focused on student’s getting used to boolean expressions and the use of

random in their program. Since the lab incorporated random, the criteria to pass this lab was kept

to a minimum as we cannot specifically test for randomness. Instead we tested to see if they used

the correct conditionals and if they are asking for the right number of inputs.

Generate Art with While Loop

This lab is focused on students obtaining and verifying user input to create an art output. Once

the student verifies the input, they will use a while loop to continuously build output lines. The

autograder for this lab followed the format mentioned above but there was a difference. There

were a lot of edge cases and variability in the art output that students could make. Students could



have interruptions in their art, they could do multiple lines, they could do one line, or they can

use a for loop instead of a while loop. Therefore, I had to avoid assumptions about the students

output and focus on analyzing all parts of the output and code. The testers would look for all

small parts and see if they all exist at the same time.

Debugging

This autograder was also assigned as a group task but this one was a little different from the

other autograders. For this lab, students were given an incorrect program and were asked to

remove all bugs. These bugs include compile errors, logic errors, and general errors that can

prevent the program from executing correctly. We still used the same format to test the student

solutions.

Generate Art with While and Indexing - Part 3

This lab focused on students verifying user input and using parts of it to build some art. The

student will take the string input and use indexing to grab specific information from it, like the

art symbol, number of occurrences, and the use of newline characters. The autograder for this lab

is similar to the other lab focusing on generating art, in that there aren’t many assumptions.

However, the main difference is that the autograder needed to test for the use of if statements

instead of a while loop. This lab had more criteria to follow and there was much more overlap in

the testers, so the ordering of the testers was crucial here.



Transforming Words and Practicing the Seven Steps

This lab was focused on students transforming words into pig latin and text message slang. The

conversions depended on the placement of vowels and consonants. The autograder for this lab

had the most sample student solutions as students were given four functions to write. Any error

that was applicable in one function was applicable in the other three. There was a lot of overlap

in the criteria for the functions that made it a little complicated in writing the exceptional testers.

For loops and Range

This lab focused on having students build a store with certain items that users can pick from and

get the price for. The main difference with building this autograder is that I needed to figure out

what items the student is using. To do this, I tested one of their functions and passed in all

possible items and saw which ones the student was returning. Once grabbing these items, I used

them as input to all testers in the three test files. This ensures that we are properly assessing the

student’s program with the items they decided to use.

4. Interested Research Question

Currently, the Coursera courses are still in development and will not be launched until a

later date. Therefore, we cannot collect nor perform data analysis. However, once the courses are

launched there is a particular area of interest that I would like to focus on. The research question

of interest is: How does a student’s perspective on the reliability of the autograders affect their

willingness to revise and complete the open-ended assignments in a CS1 course?



4.1 Motivation

Open-ended assignments in CS1 courses give students the opportunity to test their skills

in a creative manner. However, this creates a lot of variability in student programs and would

require for an autograder to be adjusted to this. These open-ended assignments would need to

have some basic criteria for an autograder to follow, which again can vary in design. Also,

having open-ended assignments be graded by an autograder, would mean that for a student to

make improvements, they must trust and use the feedback given. The feedback can vary in its

usefulness for open-ended assignments as there is much it would need to test and possibly

ignore. Therefore, it is essential for the student to build a sense of trust with the autograder as it

would help promote a learning environment that is less stressful and more focused on engaging

with the course materials.

Moreover, student perspectives on the reliability of the autograders can help pinpoint

areas of weakness. By analyzing student feedback, instructors can find these areas and make the

necessary adjustments to improve them. Addressing these weak points can lead to improvements

in the accuracy and reliability of these autograders for open-ended assignments. Such

improvements can enhance the learner experience for students which can alter their perspective

on the autograders. Altering their perspectives on the autograders can be beneficial as it could

have an effect on the student’s level of engagement and willingness to complete assignments in

the course. Analyzing these student perspectives on the autograder can provide valuable

information on the autograder strengths and weaknesses, while also revealing how the efficacy

the autograders affect course engagement.



4.2 Methods

To gain student perspectives and experiences, we implement a variety of surveys throughout the

course. First, we discuss the use of reflection surveys after each assignment. Next, we discuss the

use of an end of course survey to gain a general feeling of the course. Finally, we discuss how

survey data with Coursera student data can be used to see how student perspective can impact

their learning and performance in the course.

4.2.1 Reflection Surveys

To avoid recency bias, students will be prompted to take an optional survey through Qualtrics or

Google Forms (haven’t decided yet) for reflection upon each assignment completion. This survey

is meant to grab their perspective of the efficacy of the autograder for that particular assignment.

The following four questions are asked:

Autograder Accuracy: To gather views on the accuracy of the autograder, a Likert style question

is asked, with responses ranging from very accurate to very inaccurate: “How accurately do you

feel the autograder evaluated your assignment?” This question is also helpful in determining a

student’s level of trust in the autograders for this course. This can be kept in mind when

analyzing their responses to future questions and how they use the autograders.

Ease of Use: It’s also crucial to gather any notices of difficulty in using the feedback provided

from the autograder. This can determine if an autograder needs to be reworked or any common

weak points. The following question is asked with a similar Likert style format: “How difficult

was it to understand and use the feedback provided by the autograder?”



Assignment Length: To gather a student’s level of satisfaction with the respective autograder,

another Likert style question is asked: “How long did it take you to complete this assignment?”

This question has time ranges of hours and it is self-reported, which we can compare with the

Coursera data.

General Thoughts: If a student decides to provide more information about their experience that

wasn’t asked above, then they can provide it here in a text box.

4.2.2 End of Course Survey

To focus more on student’s experiences, an end of course survey will be given out (in the same

manner as the reflection surveys) where students will be asked to share their thoughts on the

course.

Autograder Satisfaction: To gather a general view on the course autograders the following

question is asked: “How satisfied are you with the performance of the autograders in this

course?”

Bad Assignment Experience:We want to collect data regarding bad experiences a student had

with a particular assignment/autograder. The question asked for this section would be: “Was

there an assignment where you felt the autograder performed badly? If so, which one?” This is to

see if there was a point where a student had a bad experience. We can use this as a checkpoint to

see if their engagement (based on Coursera data) was altered after this encounter.



Usefulness to CS Courses: This section is meant to see how students view the efficacy of

autograders in their learning and other student’s learning. The first question here asks “Do you

feel the autograders were fair and useful to your learning?” This will be dependent on their

experience with the autograders and it gives insight into their perspective on the autograders. The

second question: “Do you feel that autograders were reliable and can be used for future

courses?” This is a direct question focused on gathering the students’ perspective on the

reliability of the autograders.

Final Thoughts: Students will be asked a final question where they can provide their thoughts in

a text box. This is a space for students to elaborate on experience or provide general feelings

about the course or the autograders.

4.3 Analysis of Student Responses

Coursera provides student data like number of submissions per assignment, time in between

submissions, how long a student took on assignments, and their overall performance in the

course. By analyzing the student responses to the reflection and end of course surveys, we can

see if there is a pattern between perspective on reliability and performance.

5. Future Work

The first course will be launched this fall where students can learn the basic programming

concepts. We will collect data from Coursera and perform data analysis in the spring (2025). The

analysis of this data will be used to answer this research question and the research questions of



my teammates. Also, the development of new autograders for the other three courses will

continue and they will undergo a similar process in deployment and analysis.

6. References

1. Gupta, Surendra, and Shiv Kumar Dubey. "Automatic assessment of programming

assignment." Computer Science & Engineering 2.1 (2012): 67.

2. Juho Leinonen, Paul Denny, and Jacqueline Whalley. 2022. A Comparison of Immediate

and Scheduled Feedback in Introductory Programming Projects. In Proceedings of the

53rd ACM Technical Symposium on Computer Science Education - Volume 1 (SIGCSE

2022), Vol. 1. Association for Computing Machinery, New York, NY, USA, 885–891.

https://doi.org/10.1145/3478431.3499372

3. Sohail Alhazmi, Margaret Hamilton, and Charles Thevathayan. CS for All: Catering to

Diversity of Master’s Students through Assignment Choices. ACM Technical

Symposium on Computer Science Education, 2018.

4. Silas Hsu, Tiffany Wenting Li, Zhilin Zhang, Max Fowler, Craig Zilles, and Karrie

Karahalios. Attitudes Surrounding an Imperfect AI Autograder. CHI Conference, 2021.

5. Thomas W. Price, Yihuan Dong, and Tiffany Barnes. Generating DataDriven Hints for

Open-Ended Programming. International Educational Data Mining Society, 2016.

6. Tiffany Wenting Li, Silas Hsu, Max Fowler, Zhilin Zhang, Craig Zilles, and Karrie

Karahalios. 2023. Am I Wrong, or Is the Autograder Wrong? Effects of AI Grading

Mistakes on Learning. In Proceedings of the 2023 ACM Conference on International

Computing Education Research - Volume 1 (ICER '23), Vol. 1. Association for



Computing Machinery, New York, NY, USA, 159–176.

https://doi.org/10.1145/3568813.3600124

7. Sadia Sharmin, Daniel Zingaro, and Clare Brett. Weekly Open-Ended Exercises and

Student Motivation in CS1. Koli Calling, 2020.

8. Sadia Sharmin, Daniel Zingaro, Lisa Zhang, and Clare Brett. Impact of Open-Ended

Assignments on Student Self-Efficacy in CS1. ACM Conference on Global Computing

Education, 2019.

9. Sirazum Munira Tisha, Rufino A. Oregon, Gerald Baumgartner, Fernando Alegre, and

Juana Moreno. An Automatic Grading System for a High School-Level Computational

Thinking Course. International Workshop on Software Engineering Education for the

Next Generation, 2022.

10. Tammy Vandegrift. Encouraging Creativity In Introductory Computer Science

Programming Assignments. 2007 Annual Conference Exposition, 2007


